Abstract

Perspective

Psychoanalysis of the doctrine of acute pneumonia

Igor Klepikov*

Published: 29 April, 2021 | Volume 4 - Issue 1 | Pages: 032-036

It is difficult to predict how the founder of psychoanalysis, Sigmund Freud, would react to an attempt to link his theory and the method of treating mental disorders based on it [1], with such a purely physical disease as acute pneumonia (AP). It is unlikely that such an innovation could cause full approval and support. However, in this context, we are not talking about psychoanalysis as a therapeutic method for AP. In this case, only the diagnostic features of this technique are of interest

Read Full Article HTML DOI: 10.29328/journal.ijcmbt.1001023 Cite this Article Read Full Article PDF

References

  1. https://en.wikipedia.org/wiki/Psychoanalysis
  2. Feigin R. Textbook of Pediatric Infectious Diseases (5th ed.). Philadelphia: W. B. Saunders. 2004; 299.
  3. Stanley P, Orenstein W, Offit PA. Vaccines. Elsevier, Saunders. 2012; 1542.
  4. Rudan I, Boschi-Pinto C, Biloglav Z, Mulholland K, Campbell H. Epidemiology and etiology of childhood pneumonia. Bull World Health Organ. 2008; 86: 408–416. PubMed: https://pubmed.ncbi.nlm.nih.gov/18545744/
  5. Revised global burden of disease 2002 estimates. 2004. http://www.who.int/healthinfo/global_burden_disease/estimates_regional_2002_revised/en/
  6. Ruuskanen O, Lahti E, Jennings LC, Murdoch DR. "Viral pneumonia". Lancet. 2011; 377: 1264–1275. PubMed: https://pubmed.ncbi.nlm.nih.gov/21435708/
  7. https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome
  8. https://en.wikipedia.org/wiki/Middle_East_respiratory_syndrome
  9. Heneghan C, Pluddemann A, Mahtani KR. Differentiating viral from bacterial pneumonia. April 8, 2020. The Centre for Evidence-Based Medicine. Evidence Service to support the COVID-19 response. University of Oxford. 2020. https://www.cebm.net/covid-19/differentiating-viral-from-bacterial-pneumonia.
  10. Kamat IS, Ramachandran V, Eswaran H, Guffey D, Musher DM. Procalcitonin to Distinguish Viral From Bacterial Pneumonia: A Systematic Review and Meta-analysis. Clin Infect Dis. 2020; 70: 538-542. PubMed: https://pubmed.ncbi.nlm.nih.gov/31241140/
  11. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323: 1239-1242. PubMed: https://pubmed.ncbi.nlm.nih.gov/32091533/
  12. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020; 20: 355–362.
  13. Ing AJ, Cocks C, Green JP. COVID-19: in the footsteps of Ernest Shackleton. Thorax. 2020; 75: 693-694. PubMed: https://pubmed.ncbi.nlm.nih.gov/32461231/
  14. Keeley AJ, Evans CM, de Silva TI. Asymptomatic SARS-CoV-2 infection: the tip or the iceberg? Thorax. 2020; 75: 621-622. PubMed: https://pubmed.ncbi.nlm.nih.gov/32580993/
  15. Sakurai A, Sasaki T, Kato S, Hayashi M, Tsuzuki SI, et al. Natural History of Asymptomatic SARS-CoV-2 Infection. N Engl J Med. 2020; 383: 885-886. PubMed: https://pubmed.ncbi.nlm.nih.gov/32530584/
  16. Liapikou A, Rosales-Mayor E, Torres A. The management of severe community acquired pneumonia in the ICU. Expert Rev Respirat Med. 2014; 8: 293-303. PubMed: https://pubmed.ncbi.nlm.nih.gov/24838089/
  17. Kim JW, Kim JJ, Yang HW. The Prognostic Factors of Pneumonia with Septic Shock in Patients Presenting to the Emergency Department. Korean J Crit Care Med. 2015; 30: 258-264.
  18. Jason P, Dean NC, Guo Q, Kuan WS, Lim HF, et al. Severe community-acquired pneumonia: timely management measures in the first 24 hours. Critical Care. 2016, 20: 237. PubMed: https://pubmed.ncbi.nlm.nih.gov/27567896/
  19. Santos VL. Comorbidities impact on the prognosis of severe acute community-acquired pneumonia. Porto Biomedical J. 2017; 2: 247-346.
  20. Ceccato A, Torres A. Sepsis and community-acquired pneumonia. Ann Res Hosp. 2018; 2: 7.
  21. Grasselli G, Zangrillo A, Zanella A, Antonelli N, Cabrini L, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020; 323: 1574-1581. PubMed: https://pubmed.ncbi.nlm.nih.gov/32250385/
  22. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020. 323: 2052-2059. PubMed: https://pubmed.ncbi.nlm.nih.gov/32320003/
  23. Seligman R, Graeff B, Seligman S. Pandemic in the 21st Century. The Challenge of COVID-19. EC Pulmonol Respirat Med. 2020: 9: 30-31.
  24. Gupta S, Wang W, Hayek SS, Chan L, Mathews KS, et al. Association between early treatment with tocilizumab and mortality among critically ill patients with COVID-19. JAMA Intern Med. 2021; 181: 41-51. PubMed: https://pubmed.ncbi.nlm.nih.gov/33080002/
  25. Morgan AJ, Glossop AJ. Severe community-acquired pneumonia. BJA Education. 2016; 16: 167-172.
  26. Garcia-Vidal C, Ardanuy C, Tubau F, Viasus D, Dorca J, et al. Pneumococcal pneumonia presenting with septic shock: host- and pathogen-related factors and outcomes. Thorax. 2010; 65: 77-81. PubMed: https://pubmed.ncbi.nlm.nih.gov/19996337/
  27. Hadil A Al Otair, Hussein MA, Elhoseny MA. Severe pneumonia requiring ICU admission: Revisited. J Taibah University Med Sci. 2015; 10: 293-299.
  28. Alhazzani W, Møller MH, Arabi JM, Loeb M, Gong MN, et al. Surviving sepsis campaign: Guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med. 2020; 46: 854-887. PubMed: https://pubmed.ncbi.nlm.nih.gov/32222812/
  29. Pfeifer M, Hamer OW. COVID-19-Pneumonie [COVID-19 pneumonia]. Internist (Berl). 2020; 61: 793-803. PubMed: https://pubmed.ncbi.nlm.nih.gov/32728817/
  30. Attaway AH, Scheraga RG, Bhimraj A, Biehl M, Hatipoğlu U, et al. Severe covid-19 pneumonia: pathogenesis and clinical management. BMJ 2021; 372: n436. PubMed: https://pubmed.ncbi.nlm.nih.gov/33692022/
  31. Bohn MK, Hall A, Sepiashvili L, Jung B, Steele S, et al. Pathophysiology of COVID-19: Mechanisms Underlying Disease Severity and Progression. Physiology. 2020; 35: 288-301. PubMed: https://pubmed.ncbi.nlm.nih.gov/32783610/
  32. Gafford J. The Vanderbilt Open-Source Ventilator: From Napkin Sketch to Ready to Save Lives in Three Weeks," in IEEE Robotics & Automation Magazine. 20212; 28: 101-114.
  33. Rice TW, Janz DR. In Defense of Evidence-based Medicine for the Treatment of COVID-19 Acute Respiratory Distress Syndrome. Ann Am Thorac Soc. 2020; 17: 787-789. PubMed: https://pubmed.ncbi.nlm.nih.gov/32320268/
  34. Truog RD, Mitchell C, Daley GQ. The toughest triage — allocating ventilators in a pandemic. N Engl J Med. 2020; 382: 1973-1975. PubMed: https://pubmed.ncbi.nlm.nih.gov/32202721/
  35. Loo J, Spittle DA, Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax. 2021; 76: 412-420. PubMed: https://pubmed.ncbi.nlm.nih.gov/33408195/
  36. Lipman M, Chambers RC, Singer M, Brown JS. SARS-CoV-2 pandemic: clinical picture of COVID-19 and implications for research. Thorax. 2020; 75: 614-616. PubMed: https://pubmed.ncbi.nlm.nih.gov/32461230/
  37. Shehata M. Covid-19; The Possible Medical Strategies. EC Pulmonol Respirat Med. 2020; 9: 003-007.
  38. El‐Shimy IA, Mohamed MM, Hasan SS, Hadi MA. Targeting host cell proteases as a potential treatment strategy to limit the spread of SARS‐CoV‐2 in the respiratory tract. Pharmacol Res Perspect. 2021; 9: e00698. PubMed: https://pubmed.ncbi.nlm.nih.gov/33369210/
  39. Dzau VJ, Balatbat C. Strategy, coordinated implementation, and sustainable financing needed for COVID-19 innovations. Lancet. 2020; 396: 1469-1471. PubMed: https://pubmed.ncbi.nlm.nih.gov/33160552/
  40. Arnold D, Hamilton F, Morris T. The changes in incidence and management of pleural empyema in England over the last decade. Thorax. 2019; 74: A9-A10.
  41. Bobbio A, Bouam S, Frenkiel J. Epidemiology and prognostic factors of pleural empyema. Thorax, Published Online First: 2021.
  42. Farah H, et al. Potential Anti-Inflammatory Approaches for the Management of SARS-CoV2 Infections. J Pulmon Respir Sci. 2020; 5: 000S1-001.
  43. Siddiqi AI. Cytokine flames of COVID-19. J Arch Med Case Reports Case Study. 2020; 3.
  44. Christiansen CF. SARS-CoV-2 infection and adverse outcomes in users of ACE inhibitors and angiotensin-receptor blockers: a nationwide case-control and cohort analysis. Thorax. 2020; 0: 1–10.
  45. Armstrong K. Covid-19 and the Investigator Pipeline. N Engl J Med. 2021. PubMed: https://pubmed.ncbi.nlm.nih.gov/33761205/
  46. Kadakia KT, Beckman AL, Ross JS, Krumholz HM. Leveraging Open Science to Accelerate Research. N Engl J Med. 2021. PubMed: https://pubmed.ncbi.nlm.nih.gov/33761227/
  47. Klepikov I. Acute pneumonia. New doctrine and first treatment results. Lambert Academic Publishing. 2020.

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More