Abstract

Mini Review

Role of T-Helper cells (CD4+ T Cells) in human immune system against some microbial infection: A mini review

Ali M*, Lurwan M, Salihi AM and Halliru SN

Published: 11 May, 2020 | Volume 3 - Issue 1 | Pages: 026-029

The human immune system consists of innate and adaptive immune responses which both provide protective immunity to microbial infection. The adaptive immune system consists of T and B cell which act as second line defense through production of neutralizing antibody by B cells and cytotoxic activity of CD8+ T cells. The CD4+ T-cell performs a central role in the immune responses. These cells also known as T4 or helper/inducer T lymphocytes recognize antigens presented by antigen presenting cells (APC) such as macrophages and monocytes. Once antigens such as bacteria and viruses are presented, CD4+ T lymphocytes orchestrate the body’s antigen-specific immune response by Coordinating B-lymphocyte production of antibodies to these antigens, producing cytokines and induction of cytotoxic T-lymphocytes. The paper was aimed to review the role of T-helper cells (CD4+ T cells) in human immune system against some microbial infections.

Read Full Article HTML DOI: 10.29328/journal.ijcmbt.1001012 Cite this Article Read Full Article PDF

Keywords:

Bacteria; CD4+ T cells; Immunity system; Virus

References

  1. Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med. 2000; 343: 338-344. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10922424
  2. Jawetz, Melnick, Adelberg. Medical Microbiology Twenty-Sixth Edition The McGraw-Hill Companies, Inc.; 2001.
  3. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004; 5: 987-995. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15454922
  4. Hornef MW, Wick MJ, Rhen M, Normark S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nat Immunol. 2002; 3: 1033-1040. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12407412
  5. Nair S, Bayer W, Ploquin M, Kassiotis G, Hasenkrug KG, et al. Distinct roles of CD4+ T cell subpopulations in retroviral immunity: lessons from the Friend virus mouse model. Retrovirology. 2011; 8: 76. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21943070
  6. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986; 136: 2348-2357. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2419430
  7. Kennedy R, Celis E. Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev. 2008; 222: 129-144. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18363998
  8. Fayolle C, Deriaud E, Leclerc C. In vivo induction of cytotoxic T cell response by a free synthetic peptide requires CD4+ T cell help. J Immunol. 1991; 147: 4069-4073. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1684372
  9. Graham MB, Braciale VL, Braciale TJ. Influenza virus-specific CD4+ T helper type 2 T lymphocytes do not promote recovery from experimental virus infection. J Exp Med. 1994; 180: 1273-1282. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7931062
  10. Maloy KJ, Burkhart C, Freer G, Rulicke T, Pircher H, et al. Qualitative and quantitative re quirements for CD4+ T cellmediated antiviral protection. J Immunol. 1999; 162: 2867-2874. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10072535
  11. Mahon BP, Katrak K, Nomoto A, Macadam AJ, Minor PD, et al. Poliovirus-specific CD4+ Th1 clones with both cytotoxic and helper activity mediate protective humoral immunity against a lethal poliovirus infection in transgenic mice expressing the human poliovirus receptor. J Exp Med. 1995; 181: 1285-1292. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7699320
  12. Cardin RD, Brooks JW, Sarawar SR, Doherty PC. Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med. 1996; 184: 863-871. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9064346
  13. Varga SM, Welsh RM. Stability of virus-specific CD4+ T cell frequencies from acute infection into long term memory. J Immunol. 1998; 161: 367-374. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9647245
  14. Manickan E, Rouse RJ, Yu Z, Wire WS, Rouse BT. Genetic immunization against herpes simplex virus. Protection is mediated by CD4+ T lymphocytes. J Immunol. 1995; 155: 259-265. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7602102
  15. Maloy KJ, Burkhart C, Junt TM, Odermatt B, Oxenius A, et al. CD4(+) T cell subsets during virus infection. Protective capacity depends on effector cytokine secretion and on migratory capability. J Exp Med. 2000; 191: 2159-2170. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10859340
  16. Reich A, Erlwein O, Niewiesk S, ter Meulen V, Liebert UG. CD4+ T cells control measles virus infection of the central nervous system. Immunology. 1992; 76: 185-191. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16529787
  17. Iwashiro M, Peterson K, Messer RJ, Stromnes IM, Hasenkrug KJ. CD4(+) T cells and gamma interferon in the long-term control of persistent friend retrovirus infection. J Virol. 2001; 75: 52-60. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11119573
  18. Gagnon SJ, Ennis FA, Rothman AL. Bystander target cell lysis and cytokine production by dengue virus-specific human CD4(+) cytotoxic Tlymphocyte clones. J Virol. 1999; 73: 3623-3629. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10196254
  19. Barnaba V, Franco A, Paroli M, Benvenuto R, De Petrillo G, et al. Selective expansion of cytotoxic T lymphocytes with a CD4+CD56+ surface phenotype and a T helper type 1 profile of cytokine secretion in the liver of patients chronically infected with Hepatitis B virus. J Immunol. 1994; 152: 3074-3087. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7511637
  20. Jacobson S, Richert JR, Biddison WE, Satinsky A, Hartzman RJ, et al. Measles virus-specific T4+ human cytotoxic T cell clones are restricted by class II HLA antigens. J Immunol. 1984; 133: 754-757. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/6203977
  21. Yakushijin Y, Yasukawa M, Kobayashi Y. Establishment and functional characterization of human herpesvirus 6-specific CD4+ human T-cell clones. J Virol. 1992; 66: 2773-2779. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1348547
  22. Orentas RJ, Hildreth JE, Obah E, Polydefkis M, Smith GE, et al. Induction of CD4+ human cytolytic T cells specific for HIV infected cells by a gp160 subunit vaccine. Science. 1990; 248: 1234-1237. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2190315
  23. Bickham K, Munz C, Tsang ML, Larsson M, Fonteneau JF, et al. EBNA1-specific CD4+ T cells in healthy carriers of Epstein-Barr virus are primarily Th1 in function. J Clin Invest. 2001; 107: 121-130. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11134187
  24. Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood. 2008; 112: 1557-1569. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18725574
  25. McHeyzer-Williams LJ, McHeyzer-Williams MG. Antigen-specific memory B cell development. Annu Rev Immunol. 2005; 23: 487-513. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15771579
  26. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005; 6: 1123-1132. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16200070
  27. Park H, Li Z, Yang XO, Chang SH, Nurieva R, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005; 6: 1133-1141. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16200068
  28. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006; 116: 1310-1316. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16670770
  29. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005; 201: 233-240. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15657292
  30. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000; 192: 1545-1552. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11104797
  31. Crotty S. Follicular Helper CD4 T Cells (T(FH)). Annu Rev Immunol. 2011; 29: 621-663. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21314428
  32. Hughes MD, Johnson VA, Hirsch MS. Monitoring plasma HIV-1 RNA levels in addition to CD4+ lymphocyte count improves assessment of antiretroviral therapeutic response. Ann Intern Med. 1997; 126: 929-938. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9182469
  33. Wilson CB. The cellular immune system and its role in host defense, New York, NY: Churchill Livingstone Inc. 1990; 101-138.
  34. Bowen D, Lane H, Fauci A. Immuno-pathogenesis of the acquired immunodeficiency syndrome. Ann Intern Med. 1995; 103: 704-709. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2996403
  35. Beuneu H, Garcia Z, Bousso P. Cutting edge: cognate CD4 help promotes recruitment of antigen-specific CD8 T cells around dendritic cells. J Immunol. 2000; 177: 1406–1410. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16849444
  36. Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T celldendritic cell interaction. Nature. 2006; 440: 890–895. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16612374
  37. Teijaro JR, Verhoeven D, Page CA, Turner D, Farber DL. Memory CD4 T cells direct protective responses to influenza virus in the lungs through helper-independent mechanisms. J Virol.2010; 84: 9217–9226. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20592069
  38. Wiesel M, Oxenius A. From crucial to negligible: functional CD8+ T-cell responses and their dependence on CD4+ T-cell help. Eur JImmunol. 2012; 42: 1080–1088. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22539281
  39. Sette A, Rappuoli R. Reverse vaccinology: developing vaccines in the era of genomics. Immunity. 2010; 33: 530–541. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21029963
  40. Williams MA, Holmes BJ, Sun JC, Bevan MJ. Developing and maintaining protective CD8+ memory T cells. ImmunolRev. 2006; 211: 146–153. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16824124
  41. Aubert, RD, Kamphorst AO, Sarkar S, Vezys V, Ha SJ, et al. Antigen-specific CD4 T-cell help rescues exhausted CD8 T cells during chronic viral infection. Proc Natl Acad Sci USA. 2011; 108: 21182–21187. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22160724
  42. King C. A fine romance: T follicular helper cells and B cells. Immunity. 2011; 34: 827–829. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21703537
  43. Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011; 34: 108–121. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21215658
  44. Swain SL, McKinstry KK, Strutt TM. Expanding roles for CD4+ T cells in immunity to viruses. Nat RevImmunol. 2012; 12: 136–148. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22266691

Similar Articles

Recently Viewed

  • ‘Rotational alignment on patients’ clinical outcome of total knee arthroplasty: Distal femur axillary X-ray view to qualify rotation of the femoral component
    S Magersky* S Magersky*. ‘Rotational alignment on patients’ clinical outcome of total knee arthroplasty: Distal femur axillary X-ray view to qualify rotation of the femoral component. J Sports Med Ther. 2020: doi: 10.29328/journal.jsmt.1001050; 5: 008-011
  • Evaluation of the LumiraDx SARS-CoV-2 antigen assay for large-scale population testing in Senegal
    Moustapha Mbow*, Ibrahima Diallo, Mamadou Diouf, Marouba Cissé#, Moctar Gningue#, Aminata Mboup, Nafissatou Leye, Gora Lo, Yacine Amet Dia, Abdou Padane, Djibril Wade, Josephine Khady Badiane, Oumar Diop, Aminata Dia, Ambroise Ahouidi, Doudou George Massar Niang, Babacar Mbengue, Maguette Dème Sylla Niang, Papa Alassane Diaw, Tandakha Ndiaye Dieye, Badara Cisé, El Hadj Mamadou Mbaye, Alioune Dieye and Souleymane Mboup Moustapha Mbow*,Ibrahima Diallo,Mamadou Diouf,Marouba Cissé#,Moctar Gningue#,Aminata Mboup,Nafissatou Leye,Gora Lo,Yacine Amet Dia,Abdou Padane,Djibril Wade,Josephine Khady Badiane,Oumar Diop,Aminata Dia,Ambroise Ahouidi,Doudou George Massar Niang,Babacar Mbengue,Maguette Dème Sylla Niang,Papa Alassane Diaw,Tandakha Ndiaye Dieye,Badara Cisé,El Hadj Mamadou Mbaye,Alioune Dieye,Souleymane Mboup. Evaluation of the LumiraDx SARS-CoV-2 antigen assay for large-scale population testing in Senegal. Int J Clin Virol. 2022: doi: 10.29328/journal.ijcv.1001041; 6: 001-006
  • Role of orthodontist in cleft lip and palate
    Prashant Sharma*, Amit Kumar Khera and Pradeep Raghav Prashant Sharma*,Amit Kumar Khera,Pradeep Raghav. Role of orthodontist in cleft lip and palate. J Oral Health Craniofac Sci. 2021: doi: 10.29328/journal.johcs.1001035; 6: 008-015
  • Intrasellar psammomatous meningioma: a case report and review of the literature
    Luca Riccioni*, Antonio Balestrieri, Fuschillo Dalila, Maria Teresa Nasi and Luigino Tosatto Luca Riccioni*,Antonio Balestrieri,Fuschillo Dalila,Maria Teresa Nasi,Luigino Tosatto. Intrasellar psammomatous meningioma: a case report and review of the literature. J Neurosci Neurol Disord. 2022: doi: 10.29328/journal.jnnd.1001061; 6: 011-015
  • The identification of the true nature of pseudofungus structures as polyurethane catheter fragments
    Charles M Lombard* Charles M Lombard*. The identification of the true nature of pseudofungus structures as polyurethane catheter fragments. Arch Pathol Clin Res. 2022: doi: 10.29328/journal.apcr.1001029; 6: 005-008

Read More

Most Viewed

Read More