Research Article

Development of ELISA based detection system against C. botulinum type B

Arti Sharma* and S Ponmariappan

Published: 30 March, 2020 | Volume 3 - Issue 1 | Pages: 017-020

Botulism is the disease caused by botulinum neurotoxins. It is produced by an obligate anaerobic bacteria called Clostridium botulinum. There is no immuno-detection system available in the world for the detection of C. botulinum. Secretory proteins of cooked meat media grown C. botulinum type B were extracted by TCA precipitation method. Polyclonal antibodies were generated against secretory proteins. Cytokine profiling of secretory proteins were done. An immunodetection system was developed to detect the C. botulinum type B using Secretory proteins of C. botulinum type B.

Read Full Article HTML DOI: 10.29328/journal.ijcmbt.1001010 Cite this Article Read Full Article PDF


Anaerobic; Botulism; ELISA; Centrifugation; Antiserum


  1. Agarwal AK, Goel A, Kohli A, Rohtagi A, Kumar R. Food-borne botulism. J Assoc Physicians India. 2004; 52: 677-678. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15847370
  2. Chaudhry R, Dhawan VB, Kumar D, Bhatia R, Gandhi JC, et al. Outbreak of suspected Clostridium butyricum botulism in India. Emerg Infect Dis. 1998; 4: 506-507. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2640317/
  3. Fillo S, Giordani F, Anselmo A, Fortunato A, Palozzi AM, et al. Draft genome sequence of Clostridium botulinum B2 450 strain from wound botulism in a drug user in Italy. Genome Announc. 2015; 3: e00238-15. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25838491
  4. de Jong LI, Fernández RA, Pareja V, Giaroli G, Guidarelli SR, et al. First report of an infant botulism case due to Clostridium botulinum type Af, J Clin Microbiol.2015; 53: 740-742. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25502535
  5. MacDonald E, Arnesen TM, Brantsaeter AB, Gerlyng P, Grepp M, et al. Outbreak of wound botulism in people who inject drugs, Norway, October to November 2013, Euro Surveill. 2013; 18: 20630. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24229788
  6. Hernández-de Mezerville M, Rojas-Solano M, Gutierrez-Mata A, Hernández-Con L, Ulloa-Gutierrez R et al. Infant botulism in Costa Rica: first report from Central America. J Infect Dev Ctries. 2014; 8: 123-125. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24423723
  7. Kautter DA, Solomon HM. Collaborative study of a method for the detection of Clostridium botulinum and its toxins in foods. J Assoc Off Anal Chem. 1977; 60: 541-545. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/323214
  8. Cai S, Singh BR, Sharma S. Botulism diagnostics: from clinical symptoms to in vitro assays. Crit Rev Microbiol. 2007; 33: 109-125. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17558660
  9. Lindström M, Keto R, Markkula A, Nevas M, Hielm S, et al, Multiplex PCR assay for detection and identification of Clostridium botulinum types A, B, E, and F in food and fecal material. Appl Environ Microbiol. 2001; 67: 5694-5699. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11722924
  10. Sharma A, Ponmariappan S, Sarita R, Alam SI, Kamboj DV, et al. Identification of Cross Reactive Antigens of C. botulinum Types A, B, E & F by Immunoproteomic Approach. Curr Microbiol. 2018; 75: 531-540. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29332140
  11. Doellgast GJ, Beard GA, Bottoms JD, Cheng T, Roh BH, et al. Enzyme-linked immunosorbent assay-enzyme-linked coagulation assay for detection of antibodies to Clostridium botulinum neurotoxins A, B, and E and solution-phase complexes. J Clin Microbiol. 1994; 32: 105-111. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8126163
  12. Szílagyi M, Rivera VR, Neal D, Merrill GA, Poli MA. Development of sensitive colorimetric capture elisas for Clostridium botulinum neurotoxin serotypes A and B. Toxicon. 2000; 38: 381-389. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10669027
  13. Ferreira JL, Eliasberg SJ, Harrison MA, Edmonds P. Edmonds, Detection of preformed type A botulinal toxin in hash brown potatoes by using the mouse bioasssay and a modified ELISA test. J AOAC Int. 2001; 84: 1460-1464. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11601465
  14. Teixeira LK, Fonseca BP, Barboza BA, Viola JP. The role of interferon-gamma on immune and allergic responses, Mem Inst Oswaldo Cruz. 2005; 100: 137-144. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15962113
  15. Codarri L, Gyülvészi G, Tosevski V, Hesske L, Fontana A, et al. ROR [gamma] t drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol. 2011; 12: 560-567. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21516112
  16. Sachan M, Agarwal RK, A simple enzyme-linked immunosorbent assay for the detection of Aeromonas spp. Veterinarski Arhiv. 2002; 72: 327-334.
  17. Lee HA, Wyatt GM, Bramham S, Morgan MR. Enzyme-linked immunosorbent assay for Salmonella typhimurium in food: feasibility of 1-day Salmonella detection. Appl Environ Microbiol. 1990; 56: 1541-1546. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2200337
  18. Merino S, Camprubí S, Tomás JM. Detection of Aeromonas hydrophila in food with an enzyme‐linked immunosorbent assay. J Appl Bacteriol. 1993; 74: 149-154. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8444644


Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More