Abstract

Review Article

A Review on filaricidal activity of phytochemical extracts against filariasis and the Parasites Genomic Diversity

AM Gumel* and MM Dogara

Published: 26 October, 2018 | Volume 1 - Issue 1 | Pages: 024-032

Filariasis is one of the Neglected Tropical Diseases (NTDs) known to be of serious public health importance and pose devastating socio-economic burden especially among the poor people in tropical and subtropical countries of the world. The parasite is responsible for lymphatic filariasis affecting about 1.3 billion people in 72 countries worldwide. The major parasitic agents of the infection are three closely related nematodes of clade Onchocercidaei namely Wuchereria bancrofti, Brugia malayi and B. timori that are transmitted to human through bites by mosquitoes of genera: Aedes, Anopheles, Culex and Mansonia. The disease is targeted by the World Health Organization (WHO) for elimination by 2020 through the use of chemically synthesized drugs used as therapeutic agents to cure the disease but there are some setbacks. Phytochemical extracts are viewed as alternative therapy in the management of the disease. Additionally, the species have many ecological variants and are diversified in terms of their genetic fingerprint. This diversification in terms of genomic sequences as well as rapid infection rate warrant the lymphatic filarial parasites to respond differently to diagnostic and therapeutic interventions. Thus understanding the genomic diversity of the parasite will help in efficient therapeutic management of the disease, thereby eliminating it to prevent unnecessary suffering and contribute to the reduction of poverty. In this review, we have highlighted on the used for phytochemical extracts in the therapeutic management of the lymphatic and the molecular genetic diversity of the parasite was delineated.

Read Full Article HTML DOI: 10.29328/journal.ijcmbt.1001004 Cite this Article Read Full Article PDF

Keywords:

Molecular biology; Filariasis; Elephantiasis; Parasitology; Phytochemicals

References

  1. WHO. (2018). Lymphatic Filariasis. Fact Sheets.  2018, Ref.: https://goo.gl/TY6eCn
    http://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis .
  2. Questions T, East M, Room R. The Lancet Seminar: Lymphatic filariasis and onchocerciasis. The Lancet. 2010; 376: 1175-1185. Ref.: https://goo.gl/ZKmE13
  3. Lymphatic filariasis Fact Sheet: World Health Organisation. 2012.
  4. Bockarie MJ, Pedersen EM, White GB, Michael E. Role of vector control in the global program to eliminate lymphatic filariasis. Annu Rev Entomol. 2009; 54: 469-487. Ref.: https://goo.gl/ZVaAZg
  5. Katiki LM, Ferreira JFS, Gonzalez JM, Zajac AM, Lindsay DS, et al. Anthelmintic effect of plant extracts containing condensed and hydrolyzable tannins on Caenorhabditis elegans, and their antioxidant capacity. Vet Parasitol. 2013; 192: 218-227. Ref.: https://goo.gl/Wi6py4
  6. Kumar N, Misra P, Dube A, Bhattacharya S, Dikshit M, et al. Piper betle Linn. a maligned Pan-Asiatic plant with an array of pharmacological activities and prospects for drug discovery. Current Science. 2010; 99: 922-932. Ref.: https://goo.gl/aeCePa
  7. Patra JK, Dhal NK, Thatoi HN. In vitro bioactivity and phytochemical screening of Suaeda maritima (Dumort): A mangrove associate from Bhitarkanika, India. Asian Pac J Trop Med. 2011; 4: 727-734. Ref.: https://goo.gl/vkE5aK
  8. Saxena K, Dube V, Kushwaha V, Gupta V, Lakshmi M, et al. Antifilarial efficacy of Hibiscus sabdariffa on lymphatic filarial parasite Brugia malayi. Medicinal Chemistry Research, 2011; 20: 1594-1602. Ref.: https://goo.gl/NA7NKu
  9. Yadav D, Singh SC, Verma RK, Saxena K, Verma R, et al. Antifilarial diarylheptanoids from Alnus nepalensis leaves growing in high altitude areas of Uttarakhand, India. Phytomedicine. 2013; 20: 124-132. Ref.: https://goo.gl/1ozRQ1
  10. Zaman MA, Iqbal Z, Abbas RZ, Khan MN, Muhammad G, et al. In vitro and in vivo acaricidal activity of a herbal extract. Vet Parasitol. 2012; 186: 431-436. Ref.: https://goo.gl/bdM3E1
  11. Sheeja BD, Sindhu D, Ebanasar J, Jeeva S. Larvicidal activity of Andrographis paniculata (Burm.f) Nees against Culex quinquefasciatus Say (Insecta: Diptera-Culicidae), a filarial vector. Asian Pacific Journal of Tropical Disease. 2012; 2: S574-S578. Ref.: https://goo.gl/ji8F47
  12. Al-Rofaai A, Rahman WA, Sulaiman SF, Yahaya ZS. In vitro activity of neem (Azadirachta indica) and cassava (Manihot esculenta) on three pre-parasitic stages of susceptible and resistant strains of Teladorsagia (Ostertagia) circumcincta. Vet Parasitol. 2012; 188: 85-92. Ref.: https://goo.gl/Xvy3Xt
  13. Gupta J, Misra S, Mishra SK, Srivastava S, Srivastava MN, et al. Antifilarial activity of marine sponge Haliclona oculata against experimental Brugia malayi infection. Exp Parasitol. 2012; 130: 449-455. Ref.: https://goo.gl/xH2jqq
  14. Ngantchou I, Nyasse B, Denier C, Blonski C, Hannaert V, et al. Antitrypanosomal alkaloids from Polyalthia suaveolens (Annonaceae): Their effects on three selected glycolytic enzymes of Trypanosoma brucei. Bioorg Med Chem Lett. 2010; 20: 3495-3498. Ref.: https://goo.gl/vgT6KK
  15. Ramanathan T, Shanmugapriya R. Antifilarial activity of seed extracts of Ricinus communis against Brugia malayi. J Pharmacy Res. 2012; 5. Ref.: https://goo.gl/gFnG8w
  16. Nisha M, Kalyanasundaram M, Paily K, Vanamail P, Balaraman K. In vitro screening of medicinal plant extracts for macrofilaricidal activity. Parasitol Res. 2007; 100: 575-579. Ref.: https://goo.gl/ZeSbhk
  17. Coello L, Martín MJ, Reyes F. 1, 5-diazacyclohenicosane, a new cytotoxic metabolite from the marine sponge Mycale sp. Mar Drugs. 2009; 7: 445-450.
  18. Rao KV, Donia MS, Peng J, Garcia-Palomero E, Alonso D, et al. Manzamine B and E and ircinal A related alkaloids from an Indonesian Acanthostrongylophora sponge and their activity against infectious, tropical parasitic, and Alzheimer's diseases. J Nat Prod. 2006; 69: 1034-1040. Ref.: https://goo.gl/21a9u8
  19. Orhan I, Şener B, Kaiser M, Brun R, Tasdemir D. Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar Drugs. 2010; 8: 47-58. Ref.: https://goo.gl/kQ2cxp
  20. Lipton A. Antifungal and Cytotoxic Activities of Some Marine Sponges Collected from the South East Coast of India. Journal of Applied Pharmaceutical Science. 2012; 2: 52-55. Ref.: https://goo.gl/SvHyHG
  21. Rajendran I, Sobhana K, Annie Selva Sonia G, Chakraborty K, Vijayan K, et al. Antibacterial and antifungal Wuchereria bancroftiproperties of southeast Indian coastal sponges. J Marine Biological Association of India. 2011; 53: 272-274. Ref.: https://goo.gl/fo8fTp
  22. Lakshmi V, Srivastava S, Kumar Mishra S, Misra S, Verma M, et al. In vitro and in vivo antifilarial potential of marine sponge, Haliclona exigua (Kirkpatrick), against human lymphatic filarial parasite Brugia malayi. Parasitol Res. 2009; 105: 1295-1301. Ref.: https://goo.gl/5sNKVV
  23. Mishra V, Parveen N, Singhal KC, Khan NU. Antifilarial activity of Azadirachta indica on cattle filarial parasite Setaria cervi. Fitoterapia. 2005; 76: 54-61. Ref.: https://goo.gl/r3JQHY
  24. Koh HL, Chua TK, Tan CH. A guide to medicinal plants: an illustrated, scientific and medicinal approach: World Scientific Publishing Company Incorporated. 2009. Ref.: https://goo.gl/VGjemf
  25. Veitch GE, Beckmann E, Burke BJ, Boyer A, Maslen SL, et al. Synthesis of Azadirachtin: A Long but Successful Journey. Angew Chem Int Ed Engl. 2007; 46: 7629-7632. Ref.: https://goo.gl/LXHW31
  26. Tripathi A, Chandrasekaran N, Raichur A, Mukherjee A. Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves. J Biomed Nanotechnol. 2009; 5: 93-98. Ref.: https://goo.gl/b6R6Jo
  27. Schumacher M, Cerella C, Reuter S, Dicato M, Diederich M. Anti-inflammatory, pro-apoptotic, and anti-proliferative effects of a methanolic neem (Azadirachta indica) leaf extract are mediated via modulation of the nuclear factor-κB pathway. Genes Nutr. 2011; 6: 149-160. Ref.: https://goo.gl/DqnDXE
  28. Othman F, Motalleb G, Peng SLT, Rahmat A, Fakurazi S, et al. Extract of Azadirachta indica (Neem) Leaf Induces Apoptosis in 4T1 Breast Cancer BALB/c Mice. Cell J. 2011; 13: 107-116. Ref.: https://goo.gl/TGCLEK
  29. Lucantoni L, Yerbanga RS, Lupidi G, Pasqualini L, Esposito F, et al. Transmission blocking activity of a standardized neem (Azadirachta indica) seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi. Malar J. 2010; 9: 66. Ref.: https://goo.gl/Nxd8gx
  30. Aziz Q. To Study The Anti-ulcer Effect Of Azadirachta Indica Leaf Extract And Isolated Compound Of Neemnimolicine (nc) In Comparison With Ulcer Healing Drugs On Gastric Mucosa Of Albino Rats. Baqai Medical University, Karachi. 2011.
  31. Chandrasekaran C, Thiyagarajan P, Sundarajan K, Goudar KS, Deepak M, et al. Evaluation of the genotoxic potential and acute oral toxicity of standardized extract of Andrographis paniculata (KalmCold™). Food Chem Toxicol. 2009; 47: 1892-1902. Ref.: https://goo.gl/w57iVZ
  32. Shivaprakash G, Gopalakrishna H, Padbidri DS, Sadanand S, Sekhar SS, et al. Evaluation of Andrographis paniculata leaves extract for analgesic activity. J Pharmacy Research. 2011; 4: 3375-3377.
  33. Qader SW, Abdulla MA, Chua LS, Najim N, Zain MM, et al. Antioxidant, total phenolic content and cytotoxicity evaluation of selected Malaysian plants. Molecules. 2011; 16: 3433-3443. Ref.: https://goo.gl/4qb6XS
  34. Murugan K, Selvanayaki K, Al-Sohaibani S. Antibiofilm activity of Andrographis paniculata against cystic fibrosis clinical isolate Pseudomonas aeruginosa. World Journal of Microbiology and Biotechnology, 2011; 27: 1661-1668. Ref.: https://goo.gl/NZ44qq
  35. Wasman S, Mahmood A, Suan Chua L, Alshawsh MA, Hamdan S. Antioxidant and gastroprotective activities of Andrographis paniculata (Hempedu Bumi) in Sprague Dawley rats. Indian J Exp Biol. 2011; 49: 767. Ref.: https://goo.gl/zyZdjX
  36. Al-Bayaty FH, Abdulla MA, Hassan MIA, Ali HM. Effect of Andrographis paniculata leaf extract on wound healing in rats. Nat Prod Res. 2012; 26: 423-429. Ref.: https://goo.gl/NaQs9V
  37. Chao WW, Lin BF. Hepatoprotective Diterpenoids Isolated from Andrographis paniculata. Chinese Medicine. 2012; 3: 136-143. Ref.: https://goo.gl/Ai7nnq
  38. Ajaya Kumar R, Sridevi K, Vijaya Kumar N, Nanduri S, Rajagopal S. Anticancer and immunostimulatory compounds from Andrographis paniculata. Journal of ethnopharmacology, 2004; 92: 291-295. Ref.: https://goo.gl/RzL8uW
  39. Govindarajan M. Evaluation of Andrographis paniculata Burm.f. (Family:Acanthaceae) extracts against Culex quinquefasciatus (Say.) and Aedes aegypti (Linn.) (Diptera:Culicidae). Asian Pac J Trop Med. 2011; 4: 176-181. Ref.: https://goo.gl/xazR2y
  40. Elango G, Abdul Rahuman A, Kamaraj C, Bagavan A, Abduz Zahir A, et al. Efficacy of medicinal plant extracts against Formosan subterranean termite, Coptotermes formosanus. Industrial Crops and Products. 2012; 36: 524-530. Ref.: https://goo.gl/jk3PmN
  41. Shipard I. King of Bitters (Andrographis paniculata). 2009.
  42. Satyanarayana C, Deevi D, Rajagopalan R, Srinivas N, Rajagopal S. DRF 3188 a novel semi-synthetic analog of andrographolide: cellular response to MCF 7 breast cancer cells. BMC Cancer. 2004; 4: 26. Ref.: https://goo.gl/Qmd5AF
  43. Kumarappan C, Senthil S, Sundari SKK, Jaswanth A. Anti-filarial activity of some valuable Indian medicinal plants. Asian Journal of Experimental Sciences, 2009; 23: 553-558.
  44. Zaridah M, Idid S, Wan Omar A, Khozirah S. In vitro antifilarial effects of three plant species against adult worms of subperiodic Brugia malayi. J Ethnopharmacol. 2001; 78: 79-84. Ref.: https://goo.gl/jK5H3m
  45. Ali BH, Wabel NA, Blunden G. Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: a review. Phytother Res. 2005; 19: 369-375. Ref.: https://goo.gl/DVLu1x
  46. Mohamed R, Fernandez J, Pineda M, Aguilar M. Roselle (Hibiscus sabdariffa) Seed Oil Is a Rich Source of γ‐Tocopherol. J Food Sci. 2007; 72: S207-S211. Ref.: https://goo.gl/Q8XonL
  47. Saini P, Gayen P, Nayak A, Kumar D, Mukherjee N, et al. Effect of ferulic acid from Hibiscus mutabilis on filarial parasite Setaria cervi: Molecular and biochemical approaches. Parasitol Int. 2012; 61 520-531. Ref.: https://goo.gl/HyWaz5
  48. Committee for veterinary medicibnal product Cardiospermum halicacabum: The European agency for the evaluation of medicinal products. 1999.
  49. Prakash K, Rao N, Shanta Kumar S. Pharmacological investigation of Cardiospermum halicacabum (Linn) in different animal models of diarrhea. 2006; 38. Ref.: https://goo.gl/sbEVRB
  50. Deepan T, Alekhya V, Saravanakumar P, Dhanaraju M. Phytochemical and Anti-Microbial Studies on the Leaves Extracts of Cardiospermum halicacabum Linn. Advances in Biological Research. 2012; 6: 14-18. Ref.: https://goo.gl/BJGK2n
  51. Shareef H, Rizwani GH, Mahmood S, Khursheed R, Zahid H. In vitro antimicrobial and phytochemiccal analysis of Cardiospermum halicacabum L. Pak J Bot. 2012; 44: 1677-1680. Ref.: https://goo.gl/7v2nMi
  52. Khunkitti W, Fujimaki Y, Aoki Y. In vitro antifilarial activity of extracts of the medicinal plant Cardiospermum halicacabum against Brugia pahangi. J Helminthol. 2000; 74: 241-246. Ref.: https://goo.gl/T4D2wH
  53. Small ST, Tisch DJ, Zimmerman PA. Molecular epidemiology, phylogeny and evolution of the filarial nematode Wuchereria bancrofti. Infect Genet Evol. 2014; 28: 33-43. Ref.: https://goo.gl/5b4egv
  54. Ramesh A, Small ST, Kloos ZA, Kazura JW, Nutman TB, et al. The complete mitochondrial genome sequence of the filarial nematode Wuchereria bancrofti from three geographic isolates provides evidence of complex demographic history. Mol Biochem Parasitol. 2012; 183: 32-41. Ref.: https://goo.gl/V5pJDX
  55. Patra K, Ramu T, Hoti S, Pragasam GS, Das P. Identification of a molecular marker for genotyping human lymphatic filarial nematode parasite Wuchereria bancrofti. Exp Parasitol. 2007; 116: 59-65. Ref.: https://goo.gl/A8P2pt
  56. Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, et al. Draft genome of the filarial nematode parasite Brugia malayi. Science. 2007; 317: 1756-1760. Ref.: https://goo.gl/6rdRoo
  57. Mitreva M, Blaxter ML, Bird DM, McCarter JP. Comparative genomics of nematodes. Trends Genet. 2005; 21: 573-581. Ref.: https://goo.gl/atxgDp
  58. Blaxter M, Daub J, Guiliano D, Parkinson J, Whitton C, et al. The Brugia malayi genome project: expressed sequence tags and gene discovery. Trans R Soc Trop Med Hyg. 2002; 96: 7-17. Ref.: https://goo.gl/mr5oFS
  59. McNulty SN, Mitreva M, Weil GJ, Fischer PU. Inter and intra-specific diversity of parasites that cause lymphatic filariasis. Infect Genet Evol. 2013; 14: 137-146. Ref.: https://goo.gl/fK2ntP

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Figure 1

Figure 5

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More